

 [image: _images/gFACs_logo.jpg]

Introduction to gFACs

gFACs is a filtering, analysis, and conversion tool to unify genome annotations across alignment and gene prediction frameworks. It was developed by Madison Caballero and Dr. Jill Wegrzyn of the Plant Computational Genomics Lab at the University of Connecticut.

Find gFACs on GitLab [https://gitlab.com/PlantGenomicsLab/gFACs].

Version 1.1.1 - 11/12/2019

How to cite:

Caballero M. and Wegrzyn J. 2019. gFACs: Gene Filtering, Analysis, and Conversion to Unify Genome Annotations Across Alignment and Gene Prediction Frameworks. Genomics_ Proteomics & Bioinformatics 17: 305-10 [https://doi.org/10.1016/j.gpb.2019.04.002]

Comments? Questions? Email me at Madison.Caballero@uconn.edu

[image: _images/flow_chart_gFACs.jpg]

Getting started

	Installation

	Supported Input Formats

	About

Running gFACs

	Filter flags
	Basic flags
	-p [prefix]

	--false-run

	--no-processing

	--no-gene-redefining

	--rem-3prime-incompletes

	--rem-5prime-incompletes

	--rem-5prime-3prime-incompletes

	--rem-all-incompletes

	--rem-monoexonics

	--rem-multiexonics

	--min-exon-size [number]

	--min-intron-size [number]

	--min-CDS-size [number]

	--unique-genes-only

	EnTAP required flags
	--entap-annotation /path/to/your/final_annotation.tsv

	--annotated-all-genes-only

	--annotated-ss-genes-only

	Fasta required flags
	--fasta /path/to/your/nucleotide/fasta.fasta

	--canonical-only

	--rem-genes-without-start-codon

	--allow-alternate-starts

	--rem-genes-without-stop-codon

	--rem-genes-without-start-and-stop-codon

	--allowed-inframe-stop-codons [number]

	--splice-table

	--nt-content

	Output flags
	Basic output flags
	--statistics

	--statistics-at-every-step

	--create-simple-gtf

	--create-gff3

	Fasta required output flags
	--get-fasta-with-introns

	--get-fasta-without-introns

	--get-protein-fasta

	--create-gtf

	Distributions flags
	--distributions [option] [option] …

	exon_lengths

	intron_lengths

	CDS_lengths

	gene_lengths

	exon_position

	exon_position_data

	intron_position

	intron_position_data

	Compatibility flags
	--compatibility [option] [option] etc…

	SnpEff

	EVM_1.1.1_gene_prediction

	EVM_1.1.1_alignment

	FAQ
	Why are there negative intron/exon lengths?

	Why don’t incompletes match start and stop exon statistics?

	How do I include EnTAP results?

	All models were removed!

Support scripts

	format_diagnosis.pl

Installation

Installing gFACs is quite easy since this program operates almost exclusively through perl scripts. So long as the files are copied over, basic gFACs should be operational so long as perl [https://www.perl.org/] and bioperl [https://bioperl.org/] libraries are available. gFACs is also very light so feel free to have multiple copies wherever you need it!

You can find gFACs on GitLab [https://gitlab.com/PlantGenomicsLab/gFACs].

In order to download gFACs, follow these basic steps:

	Obtain the directory for gFACs from GitLab in whatever format you prefer:

[image: ../_images/Download_1.JPG]

	Place the entire folder onto your system and extract components. You should have a screen that looks like this:

[image: ../_images/Download_2.JPG]

	To test to see if it works, perform the simple command of:

perl gFACs.pl

The command line manual should appear. If so, congratulations! If not, a common error that occurs is that bioperl libraries are not loaded. If you have issues, feel free
to send an issue request on GitLab!

Supported Input Formats

There are many different programs that utilize a gff or gtf style format. Each has its own inclusion rules and formatting guidelines. Therefore, a true universal gff/gff3/gtf file converter that requires no user input may be an impossible task. gFACs requires the user to define the application source and version. If you do not find you input format, look into the support script format_diagnosis.pl. If your file is made up of many different formats merged together, I suggest breaking it apart. If you want a format added (especially if it is a well-known one) let me know and I will likely create one!

The format is specified in the gFACs command by a -f [code] flag. It is a mandatory flag and the code will fail without it. These codes are listed out below with notes and can also be seen in the command line manual. For an example of the command with a proper format flag, see any of the sample runs!

BRAKER [https://github.com/Gaius-Augustus/BRAKER]:
braker_2.05_gtf
braker_2.05_gff
braker_2.05_gff3
braker_2.0_gff3
braker_2.0_gff
braker_2.0_gtf
braker_2.1.2_gtf

 About

About

gFACs was created during the annotation of the megagenome of loblolly pine. In dealing with gene models created from different softwares and alignment tools, we needed a way to filter and merge these models. Unfortunately, no such system existed so gFACs was designed and developed to fill this niche. The applications that generate gene model evidence include aligners and ab initio gene prediction software. These programs report their predictions and alignments in a similar structured gene transfer format (gtf) or general file format (gff) however there is little consistency across these standards. You can read more about the general structures here [https://useast.ensembl.org/info/website/upload/gff.html]. gFACs will filter and select final gene models based upon user provided filters regarding their structural attributes. In addition, gFACs can optionally consider functional annotation from the EnTAP application as an additional filter to define true models.

The flow of gFACs.pl is controlled by the master script gFACs.pl. Flags and input files are processed by the master script, and a series of task-specific scripts are called upon to edit and filter gene or alignment models.

[image: ../_images/Main_flow.JPG]
The primary input is an annotation file, either in gene transfer format (gtf) or general feature format (gff/gff3). Since these file types are variable across the applications that generate them, formats designed to fit a particular software’s output must be created. Specific scripts in the folder format_scripts/ are used to convert the input into a median file type called gene_table.txt.The user is able to input their specific file type but they must inform gFACs about the format of the file. For specific formats and how to provide this information, see the supported input section [https://gfacs.readthedocs.io/en/latest/Getting%20Started/Formats.html] on it.

[image: ../_images/Format.JPG]

The gene table

gene_table.txt (referred to also as the gene table) is specfiic to gFACs and is created to hold the minimum amount of information needed to uniformly apply the filtering options.

The gene table is the most important file for this program as it is used and edited in every step. Each flag or task in evaluation needs the format of the gene table to work successfully. The gene table will always have the gene models or alignments that are retained. Here is an example of gene table format:

[image: ../_images/gene_table.png]

	The columns go:

	
	Gene part

	Length

	Start

	Stop

	Strand

	ID (8th column from input file)

	Scaffold/chromosome (needed for fasta commands)

Further scripts expect the gene table to be in the output directory called gene_table.txt. If you are using a prefix, it will look for the file with the prefix. The task-scripts also create their own files, notably if things are being separated, such as potential splice variants. However, the retained genes will always be renamed or concatenated into the master gene table.

Intron prediction

The gene table provides intron information that is not always found in the input file. Even if the input format does provide introns, they will be recalculated based on the positions of predicted exons. In the format step, a temporary file is created that will terminated upon step completion. The purpose is to add a divider between gene families. The ### line in the gene table allows for a clear break between different genes. The script then revisits the temp file, calculates introns, and makes final formatting shifts.

Here is an example of the temporary file:

[image: ../_images/temp.png]
Introns are the sequence between exons. Lengths and start and stop coordinates are calculated based on exon information. To accomplish this, exon lengths are pushed into an array and called by position. This method is more universally reliable but prone to errors involving overlapping exons. This can be resolved with a flag –splice-rescue which I recommend.

[image: ../_images/introns.png]

Task scripts

Once the formatting has completed, and the gene table has been created, filtering as designated by flags is done cyclically on the gene table until the final set of genes is produced. The order of filtering flags is pre-determined although this does not change the final result. For example, whether or not monoexonic genes are removed first or last will not change how many monoexonics appear in the final iteration of the gene table (spoiler alert: none).

Once all filtering is done, other commands are activated that involve processing or analyzing the final sets. This includes statistics, analysis of splice types, or distributions.

[image: ../_images/cycle.JPG]

The log file

In addition to the gene table, the gFACs_log.txt file is created every time the script is run, no exceptions. If a prefix is included, the log will have this prefix. The log file is reported by the master script and is appended with information regarding filtering at each step. It will also report what flags are being activated and the very specific corresponding system commands.

The log may be helpful for the user to see what is happening and the results of a particular filter. It is also helpful for noticing bugs and verifying script efficacy. gFACs supports readable and understandable log files!

 Filter flags

Filter flags

As the title suggests, these flags edit or remove content from the input file. Flag use depends on whether additional resources are provided such as fasta file or EnTAP annotation file.

	Basic flags
	-p [prefix]

	--false-run

	--no-processing

	--no-gene-redefining

	--rem-3prime-incompletes

	--rem-5prime-incompletes

	--rem-5prime-3prime-incompletes

	--rem-all-incompletes

	--rem-monoexonics

	--rem-multiexonics

	--min-exon-size [number]

	--min-intron-size [number]

	--min-CDS-size [number]

	--unique-genes-only

	EnTAP required flags
	--entap-annotation /path/to/your/final_annotation.tsv

	--annotated-all-genes-only

	--annotated-ss-genes-only

	Fasta required flags
	--fasta /path/to/your/nucleotide/fasta.fasta

	--canonical-only

	--rem-genes-without-start-codon

	--allow-alternate-starts

	--rem-genes-without-stop-codon

	--rem-genes-without-start-and-stop-codon

	--allowed-inframe-stop-codons [number]

	--splice-table

	--nt-content

 Basic flags

Basic flags

These are flags that can be run on any input without the addition of a fasta or EnTAP file. Given that, these flags are not capable of performing sequence level analysis. You can include as many flags as you want in any order. However, the order in which the flags are run is predetermined by the gFACs.pl script. This section is designed to tell you what the flags do conceptually. This is not the true order. See the log file for the order as the log is printed in sequence.

-p [prefix]

All files created will have your designated prefix. For example, if you provide the prefix “test”, your gene table will be called test_gene_table.txt. Every file (even temporary files) will have this prefix. However, it is not a mandatory argument.

--false-run

This flag allows for the user to understand the effect of filters on the original input without an additive effect. Before committing to a gFACs run, it may be important to understand what gFACs is planning on removing from the original set of models. When gFACs filters, it removes sequentially from a shrinking pool of models. However, it may be important to know how many gene models would be removed from the original set. How many overall do not have a stop codon? How many overall are of a certain CDS length?

This flag allows gFACs to run normally but always resets to the original set of genes in the gene table. Therefore, the log will print what is removed and retained but never follows through with filtering. Resulting files will be the gene table completely unedited and the log file will reflect resetting numbers.

NOTE: This flag does NOT keep the results of splice rescue nor unique genes only. This is problematic with overlap when isoforms or multiple RNA evidence models are within the same called gene. Sequence pull filters like in-frame stop codon, fasta creation, or analysis can then be wrong. For example, when setting in-frame stops to 0, all genes with isoforms will print one after another in a long sequence string that will have as many stop codons as models presented. This may create the appearance of increased removal of models. To work around this problem, run classic gFACs on your set using --splice-rescue and --unique-genes-only. Then use --false-run on that parsed gene table output. Feel free to contact me if you have problems!

--no-processing

The following occurs by DEFAULT. Use –no-processing to opt out.

Processing involves two scripts: task_scripts/overlapping_exons.pl and task_scripts/splice_variants.pl. The first analyzes the gene table for overlapping exon space and then the second analyzes genes with overlapping exon space for evidence that these are separate transcripts or models.

Take this particular gene for example:

[image: ../../_images/overlap_1.png]
Although three exons are called, they overlap as the third is supported by a different parent transcript. The first two claim an intron while the third spans over that particular intron like this:

[image: ../../_images/overlap_2.png]
Intron prediction, when not taking into account that these are separate models of the gene space, would be wrong. To solve this, genes that show exon overlap are separated out into their own file. Then they are evaluated.

[image: ../../_images/overlap_3.png]
The way splice variants are confirmed is due to the labeling on the 6th column in the gene table. If an exon has a different transcript ID (often labeled t1, t2, t3…) then the exon is separated into its own “batch”. What was originally “gene22” with three separate transcripts then becomes gene22.1, gene22.2, and gene22.3.

[image: ../../_images/overlap_4.png]
Introns are then recalculated for each of the separate isoforms. If some of the models are incomplete, they can be filtered out with other flags since they are now treated as separate “genes”. (This is because they are separated by a ### partition).

Passing genes will remain in the gene table. Results of this filter are printed in the log.

To resolve transcripts back to unique genes (selecting largest, if available, or first transcript) can be done with the --unique-genes-only flag.

Following this step, another script called task_scripts/gene_table_fixer.pl is implemented. This is done to check that exons and introns are in positive strand ascending order. Without it, printing the fastas will be problematic. It is done regardless of whether or not you use splice rescue.

--no-gene-redefining

The following occurs by DEFAULT. Use –no-gene-redefining to opt out.
Genes that are incomplete in the annotation such that it appears they start or end with an intron are labeled as:

COMP : Complete. Note this does NOT mean there is a start and in-frame stop codon.
3*_*INC : 3’ incomplete
5*_*INC : 5’ incomplete
3*_*INC+5*_*INC : Both gene ends are incomplete

Incompleteness checks do NOT require a fasta and therefore do not judge incompleteness based on codon content. For examples of this, see the filters directly below for removing incompletes.

Genes will be trimmed to reflect available CDS in the first step following format conversion but incomplete labels will remain to identify the modification made. This is opt-out using --no-gene-redefining. All filters will be applied normally regardless of choice to trim. Note that a gene labeled as a 3’ incomplete will always fail a start codon check even if the first three nucleotides of the trimmed gene is an ATG (or alternate). Same for 5’ incompletes and stop codon checks.

--rem-3prime-incompletes

This option is controlled by the script task_scripts/remove_starting_introns.pl. It is designed to pull out genes that start with “intronic” space. This is almost always because of missing evidence due to missing scaffold sequence. Genes are automatically trimmed unless –no-gene-redefining is used.

Take this for example:

[image: ../../_images/rem_start.JPG]
The very first exon begins 86 nucleotides into the proposed gene space. You can also see that the gene “begins” at position 1 in super417. This particular model came from BRAKER 2.0.

This script finds genes where gene start and first exon start do not agree. Passing genes will remain in the gene table. Results of this filter are printed in the log.

NOTE: This script takes into account directionality. Meaning a positive strand gene without a start intron would occur at the start of the gene (all gene coordinates are positive stranded). In a negative strand gene, missing the start intron would occur at the end of the gene.

NOTE: This filter does not take into acount sequence. To remove all incompletes with codons in mind, combine with –rem-genes-without-start-codon.

--rem-5prime-incompletes

This option is controlled by the script task_scripts/remove_ending_introns.pl. It is nearly identical to removing start and also takes into account strandedness and directionality. For another example in the exact same BRAKER 2.0 gene table:

[image: ../../_images/rem_end.JPG]
Here you can see that the last exon ends at 1887 but the gene claims to end at 4318.

Sometimes this occurs because of the scaffold ending as before, but further fasta involvement can find incomplete genes due to codon evidence.

Passing genes will remain in the gene table. Results of this filter are printed in the log.

NOTE: This filter does not take into acount sequence. To remove all incompletes with codons in mind, combine with –rem-genes-without-stop-codon.

--rem-5prime-3prime-incompletes

Removes genes that are BOTH 5’ and 3’ incomplete (3_INC+5_INC). Genes that are 3’ incomplete but 5’ complete and vice versa are kept in the gene table. Results of this filter are printed in the log.

--rem-all-incompletes

Performs the tasks of --rem-3prime-incompletes and --rem-5prime-incompletes. See above for what each task does individually. Passing genes will remain in the gene table. Results and commands of this filter are printed in the log as if each command was run separately.

--rem-monoexonics

Removes monoexonics based off the presence of introns. All multiexonic genes then remain in the gene table. The script that does this command is task_scripts/remove_monoexonics.pl.

--rem-multiexonics

Remove multiexonics based off the presence of introns. All monoexonics genes then remain in the gene table. The script that does this command is task_scripts/remove_multiexonics.pl.

--min-exon-size [number]

Default: 20

Creates a filter to remove genes with exons below a certain size. The script that performs this command is task_scripts/minimum_exon.pl. If you do not provide a following number, 20 is used as a benchmark for an exon that is suspiciously too small.

Passing genes will remain in the gene table. Results of this filter are printed in the log.

--min-intron-size [number]

Default: 20

Creates a filter to remove genes with introns below a certain size. The script that performs this command is task_scripts/minimum_intron.pl. If you do not provide a following number, 20 is used as a benchmark for an intron that is suspiciously too small. However, it might be technically possible to have introns that are less than 20 nucleotides.

Passing genes will remain in the gene table. Results of this filter are printed in the log.

--min-CDS-size [number]

Default: 74

Creates a filter to remove genes with a coding sequence (CDS) below a certain nucleotide length. Introns do not count, only exon sequence size. The default is based off the smallest known gene and will be used if no input is provided.

Passing genes will remain in the gene table. Results of this filter are printed in the log.

--unique-genes-only

This option will collapse directly overlapping genes and resolve transcripts created using -–splice-rescue.

When using --splice-rescue, multiple transcripts are created that represent the same gene. They may be isoforms of one gene or the exact same gene model repeated due to multiple pieces of evidence. Since separation treats each transcript as if it was its own gene for statistics and file-creation steps, this step will return only unique genes.

This is done by the script task_scripts/unique_genes.pl. It separates out transcripts denoted by their .1, .2, etc… modification. For those representing the same gene, the largest transcript is selected if available. Otherwise it will just take the first one.

When not dealing with transcripts, if two separate genes with different IDs share the exact same space, the first one numerically will be chosen. This only affects genes with 100% overlap where each gene is the same size and starts and ends at the same coordinates.

This step is done before any outputs are created such as statistics, fastas, output tables, or gtf files. Unique genes will remain in the gene table. Results of this filter including genes in, transcripts present, unique transcripts, non-transcript duplicates, lost, and final returned genes are printed in the log.

 EnTAP required flags

EnTAP [https://gitlab.com/enTAP/EnTAP] required flags

--entap-annotation /path/to/your/final_annotation.tsv

Provide the path to the output of the protein annotation. The first column should be the name of a gene that matches the gene name in the gene table. It will run with other formats but I encourage using a gFACs format input (see FAQ for EnTAP run details). Use gFACs to filter an original annotation, functionally annotate with EnTAP, then use the gFACs output and EnTAP output to filter again.

All versions of EnTAP (including future versions) should be compatible.

If issues arise, contact me at the gFACs GitLab.

The annotation should look something like this:

[image: ../../_images/entap.png]

--annotated-all-genes-only

Only genes that have an associated similarity search OR EggNOG annotation are kept. Done by the script task_scripts/annotated_all_genes_only.pl. Passing genes will remain in the gene table. Results of this filter are printed in the log.

--annotated-ss-genes-only

Only genes that have an associated similarity search annotation are kept. Done by the script task_scripts/annotated_ss_genes_only.pl. Passing genes will remain in the gene table. Results of this filter are printed in the log.

 Fasta required flags

Fasta required flags

These scripts require that there is a fasta, because sequence is being evaluated. The gFACs.pl script will index your fasta, and then task scripts that require sequence will find and use that index. If there is already an index, the indexing step will be skipped.

To specify a fasta:

--fasta /path/to/your/nucleotide/fasta.fasta

Bioperl will create an index with the ending “.fasta.idx”. It is a fairly fast process. The file may end with .fa or .fasta, but no other naming formats can be recognized.

NOTE: This fasta MUST MUST MUST be the same fasta used when making your particular gff3/gtf/gff. Bioperl needs to recognize the name on the fasta info line to the sixth column in the gene table.

--canonical-only

Analyzes introns for a canonical splice sites (GT-AG on the positive strand). The script that performs this task is task_scripts/canonical_only.pl.

To pass, all introns in a gene must have canonical splice sites. Monoexonics will also pass this filter because they do not have the evidence to be pulled out. Of course, monoexonic genes can be removed by –rem-monoexonics filter.

Genes that pass this filter are kept in the gene table and results are printed in the log.

NOTE: Splice sites take into account directionality and reverse compliment.

--rem-genes-without-start-codon

The first three nucleotides of the sequence are analyzed to match ATG. With this flag alone, no alternate start codons are taken into account (use --allow-alternate-starts to include alternate starts). This task is performed by task_scripts/rem_genes_without_start.pl. Again, gene directionality is considered.

NOTE: Genes marked 5’ incomplete are assumed NOT to have a start codon and are removed regardless if the gene starts with a Met.

Genes that pass this filter are kept in the gene table and results are printed in the log.

--allow-alternate-starts

If --rem-genes-without-start-codon is used, the start codons of GTG and TTG will also be included alongside ATG. This may be useful in Prokaryotic annotations. This task is performed by task_scripts/rem_genes_without_start_alternate.pl.

Outputs are identical to --rem-genes-without-start-codon.

--rem-genes-without-stop-codon

The last three nucleotides of the sequence are analyzed to match TAA, TAG, and TGA. Currently, all end codons are assumed to be within the reported gene. This task is performed by task_scripts/rem_genes_without_stop.pl. Again, gene directionality is considered.

Following this step, a script called task_scripts/frame_detection.pl is run. It is designed to pick out any genes that technically have a stop codon as the last three nucleotides, but it is not real because the codon is actually out of frame. These are rare occurrences, often happening on negative strand genes that run into the beginning of a scaffold where the first three nucleotides of the scaffold are a reverse complement stop codon. To solve this, any gene whose CDS is not divisible by 3, is removed.

NOTE: Genes marked 3’ incomplete are assumed NOT to have a stop codon and are removed regardless if the gene has a terminating in-frame stop.

Genes that pass this filter are kept in the gene table and results are printed in the log.

--rem-genes-without-start-and-stop-codon

Removes genes that lack BOTH a start and stop codon. Genes that have a start codon but no stop and vice versa are kept in the gene table. Results of this filter are printed in the log.

--allowed-inframe-stop-codons [number]

Default: 0

Creates a filter that removes genes based on the presence of a stop codon that is not the last codon in the gene. For example, setting this parameter as 1 will allow one other stop codon between the methionine and the terminating stop codon.

If you are not filtering for start and stop codons, this will still work so long as there are stop codons within the amino acid sequence but not necessarily at the end.

Genes that pass this filter are kept in the gene table and results are printed in the log.

--splice-table

To understand splice usage, a splice-site table is printed to the log that tells the frequency of every type of splice site used. This command is performed by task_scripts/splice_table.pl.

The splice table will look something like this:

[image: ../../_images/splice_table.png]
This splice table will show you everything present in the file adjusted to lower case letters including N-bases. If you specify canonical genes only, the table will only show you gt_ag counts.

--nt-content

The CDS (all exon sequences) is analyzes for GC, AT, and N content by percent composition. This information is printed to the log. Here is an example of the output:

[image: ../../_images/nt_content.png]

 Output flags

Output flags

	Basic output flags
	--statistics

	--statistics-at-every-step

	--create-simple-gtf

	--create-gff3

	Fasta required output flags
	--get-fasta-with-introns

	--get-fasta-without-introns

	--get-protein-fasta

	--create-gtf

	Distributions flags
	--distributions [option] [option] …

	exon_lengths

	intron_lengths

	CDS_lengths

	gene_lengths

	exon_position

	exon_position_data

	intron_position

	intron_position_data

	Compatibility flags
	--compatibility [option] [option] etc…

	SnpEff

	EVM_1.1.1_gene_prediction

	EVM_1.1.1_alignment

 Basic output flags

Basic output flags

These are output flags that do not require the input of any fasta or EnTAP files.

--statistics

Statistics will be run on the gene table and printed to statistics.txt. This command is performed by task_scripts/classic_stats.pl. If a prefix is used, the statistics file will be named accordingly.

These are all the potential statistics in the reported format:

Number of genes:
Number of monoexonic genes:
Number of multiexonic genes:

Number of positive strand genes:
Monoexonic:
Multiexonic:

Number of negative strand genes:
Monoexonic:
Multiexonic:

Average overall gene size:
Median overall gene size:
Average overall CDS size:
Median overall CDS size:
Average overall exon size:
Median overall exon size:

Average size of monoexonic genes:
Median size of monoexonic genes:
Largest monoexonic gene:
Smallest monoexonic gene:

Average size of multiexonic genes:
Median size of multiexonic genes:
Largest multiexonic gene:
Smallest multiexonic gene:

Average size of multiexonic CDS:
Median size of multiexonic CDS:
Largest multiexonic CDS:
Smallest multiexonic CDS:

Average size of multiexonic exons:
Median size of multiexonic exons:
Average size of multiexonic introns:
Median size of multiexonic introns:

Average number of exons per multiexonic gene:
Median number of exons per multiexonic gene:
Largest multiexonic exon:
Smallest multiexonic exon:
Most exons in one gene:

Average number of introns per multiexonic gene:
Median number of introns per multiexonic gene:
Largest intron:
Smallest intron:

 Fasta required output flags

Fasta required output flags

In order to create fasta required outputs, you will need to provide a fasta input. See how to here [https://gfacs.readthedocs.io/en/latest/Flags/Fasta%20Required%20Flags/index.html#fasta-path-to-your-nucleotide-fasta-fasta]. If a proper fasta is provided, you unlock all these flags:

--get-fasta-with-introns

The nucleotide fasta sequence is printed to genes_with_introns.fasta. The genes are always printed on the positive strand. This fasta will contain the intron sequences so number of genes printed will be the same for both with and without introns. The header for each sequence is the fifth column of the gene line in the gene table.

This command is performed by task_scripts/get_fasta_with_introns.pl. If a prefix is specified, the output fasta will be named accordingly.

--get-fasta-without-introns

The nucleotide fasta sequence is printed to genes_without_introns.fasta. The genes are always printed on the positive strand. This fasta will not contain the intron sequences. The header for each sequence is the fifth column of the gene line in the gene table.

This command is performed by task_scripts/get_fasta_with_introns.pl. If a prefix is specified, the output fasta will be named accordingly.

--get-protein-fasta

A protein fasta of the genes is created called genes_without_introns.fasta.faa. Genes never include the introns (because of course not). All genes are printed in the N-terminus to C-terminus orientation (so M would be first) but reverse complementation of the negative strand is considered to choose the correct amino acids. Stop codons are depicted as *. The header for each sequence is the fifth column of the gene line in the gene table.

This command is performed by task_scripts/get_protein_fasta.pl. If a prefix is specified, the output fasta will be named accordingly.

--create-gtf

A gtf file called out.gtf is created. If a prefix is specified, the gtf file will have it. This step is done with two scripts, task_scripts/add_start_stop_to_gene_table.pl and task_scripts/gtf_creator.pl.

Since GTF files (as a general rule) require start and stop codon information, the locations of the start and stop codon (if found) are added to the gene table and the final gtf. CDS scores that correspond to an exon are retrieved from the original input file if found and the “exon” attribute is returned to “CDS”. Introns currently remain.

The source line does say gFACs. Not to steal the credit, it just might be helpful to know where the information is coming from particularly after filtering and rearranging.

 Distributions flags

Distributions flags

gFACs is capable of reformatting annotations into formats for distributions. It can provide distribution summaries or raw data. To signify distributions, a single flag followed by options may be used:

--distributions [option] [option] …

Activates the ability to create distributions. This task is always done last on the final version of the gene table. If a prefix is specified, all output files will reflect that.

All outputs are printed in a .tsv file that can be opened for viewing on excel or R. The options available for distributions are as follow:

exon_lengths

Creates the file exon_lengths_distributions.tsv. In it, a range of exon lengths and the corresponding representation is printed. In this example, --min-exon size was set to 40, which is reflected in the numbers:

[image: ../../_images/exon_length.png]
The above data, when rendered into a histogram using R, looks like this:

[image: ../../_images/exon_dist_1.png]
Notice that the curve is bimodal, which is indicative of the mono and multiexonic genes. Utilizing two runs one with --rem-monoexonics (red) and one with --rem-multiexonics (yellow) you can see the curves are indeed the difference in gene type where smaller exon lengths are in multiexonic genes:

[image: ../../_images/exon_dist_2.png]
Advanced: Zoom of exon lengths can be controlled with a trailing number. This changes the size of the step. In the example above, the range of values as the cluster for the distribution is 10, but it can be controlled like this:

exon_lengths 5

This would change the above table to:

The default, if no number is chosen, is decided by the maximum exon length of the provided data. For a maximum length that is less than 100 nucleotides, the step is 1. For a maximum value of exon length that is more than 100 but less than 1,000, the step is 10 and so on.

Changing this step number should not drastically change the time it takes to run. However, the file will be larger and have more lines when a smaller number is used!

intron_lengths

Creates the file intron_lengths_distributions.tsv. In it, a range of intron lengths and the corresponding representation is printed. The outputs and applications are identical to exon_lengths.

Advanced: Zoom of intron lengths can be controlled with a trailing number. This changes the size of the step. It can be controlled like this:

intron_lengths 20

The default, if no number is chosen, is decided by the maximum intron length of the provided data. For a maximum length that is less than 100 nucleotides, the step is 1. For a maximum value of intron length that is more than 100 but less than 1,000, the step is 10 and so on.

Changing this step number should not drastically change the time it takes to run. However, the file will be larger and have more lines when a smaller number is used!

CDS_lengths

Creates the file CDS_lengths_distributions.tsv. In it, a range of CDS lengths and the corresponding representation is printed. The outputs and applications are identical to exon_lengths.

Advanced: Zoom of CDS lengths can be controlled with a trailing number. This changes the size of the step. It can be controlled like this:

CDS_lengths 25

The default, if no number is chosen, is decided by the maximum CDS length of the provided data. For a maximum length that is less than 100 nucleotides, the step is 1. For a maximum value of CDS length that is more than 100 but less than 1,000, the step is 10 and so on.

Changing this step number should not drastically change the time it takes to run. However, the file will be larger and have more lines when a smaller number is used!

gene_lengths

Creates the file gene_lengths_distributions.tsv. In it, a range of gene lengths and the corresponding representation is printed. These sequence lengths do include all introns. The outputs and applications are identical to exon_lengths.

Advanced: Zoom of gene lengths can be controlled with a trailing number. This changes the size of the step. It can be controlled like this:

gene_lengths 1000

The default, if no number is chosen, is decided by the maximum gene length of the provided data. For a maximum length that is less than 100 nucleotides, the step is 1. For a maximum value of gene length that is more than 100 but less than 1,000, the step is 10 and so on.

Changing this step number should not drastically change the time it takes to run. However, the file will be larger and have more lines when a smaller number is used!

exon_position

Analyzes and creates an output that evaluates exon position in a gene to its size. Position meaning which exon comes first. In positive strand genes, these are in the order they appear in the gene table. For reverse strand genes, the first exon is the last one to appear in the gene table.
Creates the output file exon_position_distributions.tsv. The output looks like this:

[image: ../../_images/exon_position.png]
Exon position goes from 1 to whatever the maximum number of exons in one gene is. It will match what a statistics output would say. The second column is how many exons are representative of that position. The first exon support (70,923 above) will always be equal to the overall number of genes because even monoexonics have a first exon. (You can remove those, of course). You can also say there are 70,923 first exons, 42,161 second exons, etc…

The third column is how many genes have the first column number as their maximum number of exons. So, in the last row shown, there are 1,656 genes that have 6 total exons. There are 28,762 monoexonics then as well by this same logic.

The third and fourth columns are average and median size of an exon at that positon. The last two are minimum and maximum. If you use a minimum exon parameter (as I did above) it will be reflected!

exon_position_data

Provides the raw data in data_intron_position_distributions.tsv on exon positions alongside exon_position_distributions.tsv produced from the command above. This set of data can be used to make boxplots.

The data appears like this:

[image: ../../_images/exon_position_raw.png]
The first column is the exon position and the following values in the row are the sizes of exons (non-sorted). The row will have as many columns as exon position data points. Notice how 32 (the last visible row) has only 5 numbers, showing there are only 5 genes that have a 32nd exon where the values are the sizes.

intron_position

Intron positioning works identically to exon positions. However, this will only include multiexonic genes! All header names have the same meaning as exon position.

Creates the output file intron_position_distributions.tsv.

intron_position_data

Intron position raw data works identically to exon positions and will also only include multiexonic genes. Creates the output file data_intron_position_distributions.tsv and the default intron_position_distributions.tsv.

A sample of a boxplot that can be created:

[image: ../../_images/position_boxplot.png]
For how I created the boxplot, feel free to contact me!

 Compatibility flags

Compatibility flags

Just as the gff3/gff/gtf file formats follow their owns rules, so do other software in needing specific input formats. Although the gFACs gtf [https://gfacs.readthedocs.io/en/latest/Flags/Fasta%20Required%20Flags/output.html#create-gtf] is fairly standard, a few modifications must be made before it can safely be used within other programs. This includes transitions to other formats such as gff or gff3!

Several formats are alrady compatible by default. –create-gtf output is compatible with Jbrowse and protein/nucleotide FASTAs are compatible with EnTAP!

These options are still being developed and user input is more than welcome! Do you not see a format you would like added? Let me know!

To specify the compatibility arguments, use this flag:

--compatibility [option] [option] etc…

Allows the creation of software compatible files. Available format options are:

SnpEff

A gff file called snpeff_format.gff will be created that can be used for SnpEff [http://snpeff.sourceforge.net/] build. This format can be used in the default.

EVM_1.1.1_gene_prediction

A gff file called EVM_1.1.1_gene_prediction_format.gff will be created that can be used as a gene prediction format for EVidence Modeler [https://evidencemodeler.github.io/#Preparing_inputs].

EVM_1.1.1_alignment

A gff file called EVM_1.1.1_alignment_format.gff will be created that can be used as an alignment format for EVidence Modeler [https://evidencemodeler.github.io/#Preparing_inputs].

 FAQ

FAQ

Under construction. See gitlab issues or contact through gitlab with issues you have.

Why are there negative intron/exon lengths?

Coming soon.

Why don’t incompletes match start and stop exon statistics?

Coming soon.

How do I include EnTAP results?

Coming soon.

All models were removed!

Coming soon.

For further issues, report to gitlab.

 format_diagnosis.pl

format_diagnosis.pl

To determine what format you have, if it is ambiguous, format_diagnosis.pl may be able to help. The script will output information that you can compare with the table below to see if another format may work for you.
To use the script:

perl format_diagnosis.pl [input_file]

The output will look something like this:

[image: ../_images/format_diag.png]
The data tells you what information is present followed by the observed quality of the feature. In the above output, the line of the “gene” feature, comes up 278 times and matches that with mRNA. This is not always the case. It also has exon lines and CDS lines but NOT at the same frequency. So CDS will be the more important feature.

Given the comparison, you could choose several formats that might work. braker_2.05_gff3, braker_2.05_gtf, gFACs_gtf, and several more.

FORMAT properties:

NOTE: In this table, know that each format example is NOT the same file. The information inside the [brackets] is just an example number and judgement on format should be made from ratios. Your file will not fit the actual numbers in the brackets above, but the ratio between a format’s exon to CDS counts may be the same. These were derived from my own collection of sample files across different species and projects.

[image: ../_images/Table.png]

 Index

Index

 <no title>

 Tips

Tips

 Troubleshooting

Troubleshooting

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/Table.png
. start_|stop_
Format |partion| gene |mRNA| exon | CDS |intron | S| 9P| other third column
Yes Yes | Yes | Yes
9map_2017_03.17_0%) 150 Ve 10026) 506 | at11e) | faoeaay | NOIO) | Neldl | Nolol 0
Yes | Yes | Yes | Yes | ves | Yes | ves
braker 20503 | NolO] | (37757) | [a2a7) | 11372801 | 11372801 |[104308] | [32571] | (32936 | (el snal ntemaltermine)
Yes Yes | Yes | Yes | Yes | emnaiintemalmta
braker 205,01 | NolO) | z77syy | Nl | NoO1 | (13720) |(104808)| (325711 |132636]| trnsertsingle)
Yes Yes | Yes | Yes | Yes | Yes |ntelsnge ranscrottemina
braker 205,91 | NolOl | yazzsyy | NOU | (137280 | 1372601 |r104sos| (22571 | 329361 intma)
Yes | Yes | Yes | Yes | ves | ves | ves
braker 20,91 | NolO] | tqpase | (63356) | (270267 | 1270267) 120203 (615831 | 61384] 0
Yes Yes | Yes | ves | ves
praker 20,01 | NolOl | (egasgy | NoLO | NolOl | 37067) (208203 (61583 | 618341 (renseted)
Yes Yes | ves | ves | ves | ves
praker 200t | Nol0] | tgga5) | NoUO) | ;70367 | (270267 | ;2082031 | (1583 |61894) (ranseriz)
(ranssted_nucitice_mtch
Yes | ves | ves | ves | ves cont he.prme UTR
maker 231901 | (115474 | (34322) | (34322 | (parta | foargy | NOTO) | NolO] | NolOL| o fheprme UTR
‘match_part protein_match)
genomethreader_166_| Yes | Yes | Yes | Yes | Yes (tvse_prime i spice stz
ofts 598452 | (598452 | (8163711 11821401 511162] | NO 01 | No[0] | NoTOl | ‘e rime cs spice.sie)
offead 0912.013 | Nolo] | Nol0] | 4455y | rebemn | (becy | NotOl | Notdl | Nofol 0
cronerste 24051 | Nolol [res2128] NoT] Ives 3843Yes 3843 (155, | ol | Nofo1 | sy e e
Yes | Yes | ves | ves
EWLLL1GM | NolO | pogrg) | (oo67s) | (e6ens) | (es4ns | NOLO) | NolO]) Nolo) 0
Yes Yes | Yes | ves | ves
gFACs gif NolO1 | iz7gg) | NOIO | NoIO) | 50306 | e7sae | 1427 | 279e) 0
(et region
Yes | Yes | ves | ves seqence feshre
refseq_gff YesU1] | (oret) | ioueser | o1ty | i | NoLO1 | Noro1 | Notor | _coNA matchine R

lpseudogene primary Transcript
RNA transcript (RNA mIRNA)

_images/entap.png
g60348.t1

960343.t1
g60341.t1 SpIF4JLES|PLPD2 ARATH 80.6 572 52 s see 1 557 2.80-252 92.400000 Sp|F4JLPS | PLPD2_ARATH Dihydrolip
ovl aenydrogenase 2, chloroplastic OS=Arabidopsis thaliana GN-LPD2 PE: 2 Arabidopsis thaliana /UCHC/LABS/Wegrzyn/WalmutGenomes/Regia/outfiles/similarity_searc
n/blastp RegiaCompleteMultiExonics final uniprot_Sprot.out No ves 29760.VIT_055007701210.£01 2.82-277 ss9.5 Viridiplantae

1BHS5@stTNOG, 1DUCKEVirNOG, COG12496N0G, KOG1335@eull06 dihydrolipoyl dehydrogenase Biosynthesis of secondary metabolites (01110), Pyruvate metabolism (00620), Meta
bolic pathways (01100), Citrate cycle (ICA cycle) (00020), Glycine, serine and threonine metabolism (00260), Glycolysis / Gluconeogenesis (00010), Microbial metabolism
in diverse enviromments (01120), Valine, leucine and isoleucine degradation (00280) PEAM (Pyr_redox 2, Pyr_redox dim, Pyr_redox, GIDA, FAD binding 2) 50:00090

s8-biosynthetic process (L=2),G0:0044237-cellular metabolic process(L=2),G0:0044710-single-organism metabolic process (L=2),GO:0071704-organic substance metabolic process
(L=2), G0:0043227-membrane-bounded organelle (L=2),GO0:0043228-non-membrane-bounded organelle (L=2),G0:0043233-0rganelle lumen(L=2),G0:0044422-organelle part (L=2),G0:0044
464-cell part (L=2), G0:0016491-oxidoreductase activity(L=2),

960340.t1

nav.xhtml

 Table of Contents

 		
 Introduction to gFACs

 		
 Installation

 		
 Supported Input Formats

 		
 About

 		
 The gene table

 		
 Intron prediction

 		
 Task scripts

 		
 The log file

 		
 Filter flags

 		
 Basic flags

 		
 -p [prefix]

 		
 –false-run

 		
 –no-processing

 		
 –no-gene-redefining

 		
 –rem-3prime-incompletes

 		
 –rem-5prime-incompletes

 		
 –rem-5prime-3prime-incompletes

 		
 –rem-all-incompletes

 		
 –rem-monoexonics

 		
 –rem-multiexonics

 		
 –min-exon-size [number]

 		
 –min-intron-size [number]

 		
 –min-CDS-size [number]

 		
 –unique-genes-only

 		
 EnTAP required flags

 		
 –entap-annotation /path/to/your/final_annotation.tsv

 		
 –annotated-all-genes-only

 		
 –annotated-ss-genes-only

 		
 Fasta required flags

 		
 –fasta /path/to/your/nucleotide/fasta.fasta

 		
 –canonical-only

 		
 –rem-genes-without-start-codon

 		
 –allow-alternate-starts

 		
 –rem-genes-without-stop-codon

 		
 –rem-genes-without-start-and-stop-codon

 		
 –allowed-inframe-stop-codons [number]

 		
 –splice-table

 		
 –nt-content

 		
 Output flags

 		
 Basic output flags

 		
 –statistics

 		
 –statistics-at-every-step

 		
 –create-simple-gtf

 		
 –create-gff3

 		
 Fasta required output flags

 		
 –get-fasta-with-introns

 		
 –get-fasta-without-introns

 		
 –get-protein-fasta

 		
 –create-gtf

 		
 Distributions flags

 		
 –distributions [option] [option] …

 		
 exon_lengths

 		
 intron_lengths

 		
 CDS_lengths

 		
 gene_lengths

 		
 exon_position

 		
 exon_position_data

 		
 intron_position

 		
 intron_position_data

 		
 Compatibility flags

 		
 –compatibility [option] [option] etc…

 		
 SnpEff

 		
 EVM_1.1.1_gene_prediction

 		
 EVM_1.1.1_alignment

 		
 FAQ

 		
 Why are there negative intron/exon lengths?

 		
 Why don’t incompletes match start and stop exon statistics?

 		
 How do I include EnTAP results?

 		
 All models were removed!

 		
 format_diagnosis.pl

_images/exon_length.png
exon_lengths N

0-9 o
10-15 o
20-25 o
3035 0
40-25 350
s0-59 404
60-69 580
70-79 630
s0-89 a1

90-99 760

_images/exon_position.png
exon_position n(Individual exons) n(Max exons in gene) average size median size Min

1 70823 28762 335.161 294 20 2955
2 42161 19901 229.762 170 20 4975
B 22260 8596 212.085 146 20 3210
. 1366¢ 4376 195.893 131 20 2028
s s2es 2557 177.604 119 20 2056
6 6731 1656 172.398 114 20 6544

_images/exon_dist_1.png
Prevalence

400 600 800

200

Exon distribution : Protea

[

0-9 390-399 910-919 1490-1499 2140-2149 2790-2799

Exon Lengths

_images/exon_dist_2.png
Prevalence
400

800

600

200

Exon distribution : Protea

0-9 320-329 750-759 1230-1239 1760-1769 2290-2299 2820-2829 3350-3359

Exon Lengths

_images/format_diag.png
~bash-4.2% perl format diagnosis.pl /UCHC/LABS/Wegrzyn/gstats/format_dropoff/trimmed i _trans_gstats.gff3
Format partition geme mRNA exon CDS intron start_codon stop_codon Other third column
Your input no[0] ves[278] ves[278] ves[1583] ves[1603] no[0] nof[0] no[0] ()

_images/gFACs_logo.jpg

_images/exon_position_raw.png
4379
a6e
383
E
570
430
228
136
369
79
152
%6
1883
76
a8
1420
7
£
s28
106
2246
192
286
57
598
see
181
158
236
&7
qas
104

G9s
115
2926
455
137
57
125
533
707
s28
127
252
205
s
&s3
116
108
135
165
sese
2071
20
172
208
210
788
0
439
152
51
122
94

117
52
351
78
59
120
547
356
201
1341
423
523
15194
1756
100
%6
767
235
553
50
5e
138
a5
117
1651
253
s183
125
6
53
e
107

206
229
6307
1150
115
108
525
3615
53
2514
111
122
sa1
5e
107
106
234
128
344
50
1636
395
597
216
130
55
03
1410
100
1890
50
16344

593
2852
%6
1413
55
1760
553
a5
112
&7
196
476
782
275
101
a16
ss6
&0
185
126
775
100
e
1032
142
1946
106
131
S
ES
1908
2053

05
P
202
1071
125
a1
2870
15203
118
513
7459
£
&060
153
740
207
102
s
e
436
2233
127
51
77
s
121
782
52
108
285
%6

492
115
1133
104
123
157
&7
523
178
a12
242
101
2702
59
26
172
&9
136
1152
7128
2396
122
6
271
1279
521
227
78
103
110
2998

102
240
138
o3
108
%6
167
128
160
e
383
117
5e
51
1088
2972
153
112
100
&20
a3
51
£
1423
a1
2258
115
240
20
137

106
2030
256
s26
115
s
2059
211
s66
222
3965
530
269
52
103
79
425
141
768
1961
4235
127
a6
437
a10
115
79
288
a1
3452

ES
725
102
176
312
q95
1358
s
&7
162
214
103
52
a17
101
52
o3
517
369
3
132
138
117
432
110
26
173
110

s699
20
1067
195
1904
76
50
115
136
121
55
sas
140
52
112
113
287
162
5e
275
162
1718
70
1681
50
&9
133
5226

4578
197
140
197
a22
06
126
G295
s99¢
a1
282
1796
113
413
s96
1229
116
239
s
775
125
a6
114
553
2690
1032
1240

593
211
276
5313
104
208
167
701
188
938
120
701
3335
4907
257
1103
470
28
s22
1039
433
3001
108
108
3853
178
5005

1578
771
743
2038
613
s
332
s
167
E
1338
278
50
20
200
128
513
70
75
198
116
176
50
378¢
106
1206

378
E
191
1641
198
126
1133
5e
1147
26
1624
2862
a2
2328
119
s
520
235
2256
108
765
59
sss
208
e
s6s

a6
4333
2031
179
s
1329
&
380
ss60
778
158
288
358
108
393
ES
51
a2e
515
125
s
174¢
1526
125
188
299

s22
2060
1309
1525
490
%6
e
2746
e2
514
1657
135
160
53
278
136
103
293
1771
596
2750
138
79
o7
&7

94
5910
1209
5193
e
190
6996
133
78
217
108
3676
2220
28
198
1325
&9
51
310
50
102
75
158
o6
108

ES
188
131
126
283
1807
125
2643
2175
135
182
55
116
103
11154
1007
108
191
1654
100
see
5776
102
e

708
531
1567
4120
1712
128
s2s
210
124
218
e
1508
2187
395
1714
153
s
431
1027
50
79
128
3086
120

_images/flow_chart_gFACs.jpg
1 Inputformats Optionalinputs

Analysis