gFACs Documentation
Release 1.0.0

Madison Caballero, Jill Wegrzyn

Jul 17, 2020

Getting started

Installation 3
Supported Input Formats 5
About 7
Filter flags 11
Output flags 21
FAQ 31

format_diagnosis.pl 33

gFACs Documentation, Release 1.0.0

Tl | emeeme
} — XX L

O
7

gFAC:s is a filtering, analysis, and conversion tool to unify genome annotations across alignment and gene pre-
diction frameworks. It was developed by Madison Caballero and Dr. Jill Wegrzyn of the Plant Computational

Genomics Lab at the University of Connecticut.
Find gFACs on GitLab.
Version 1.1.1 - 11/12/2019

How to cite:

Caballero M. and Wegrzyn J. 2019. gFACs: Gene Filtering, Analysis, and Conversion to Unify Genome Annotations
Across Alignment and Gene Prediction Frameworks. Genomics_ Proteomics & Bioinformatics 17: 305-10

Comments? Questions? Email me at Madison.Caballero@uconn.edu

Getting started

https://gitlab.com/PlantGenomicsLab/gFACs
https://doi.org/10.1016/j.gpb.2019.04.002
https://doi.org/10.1016/j.gpb.2019.04.002
mailto:Madison.Caballero@uconn.edu

gFACs Documentation, Release 1.0.0

1 Inputformats Optionalinputs

Analysis/ . Gene FASTA EnTAP

uatanyases Aligners predictors genome annotation

l: 2[: - :

EVidenceModeler Saror?:'lf:pr'ea-:er ;;KQEEPE_ . ' .
aerBark Exonerate ___. il - e P
- \x GTF conversion o — &r—::f'i__' o

-;FAC; o= J & _—"—
Slallsll cs b ===

i]||I| |""| l:> Outputs
e)= '

3
Format

correction

Model
processing
and
filtering

Getting started

CHAPTER 1

Installation

Installing gFACs is quite easy since this program operates almost exclusively through perl scripts. So long as the files
are copied over, basic gFACs should be operational so long as perl and bioperl libraries are available. gFACs is also
very light so feel free to have multiple copies wherever you need it!

You can find gFACs on GitLab.
In order to download gFACs, follow these basic steps:

1. Obtain the directory for gFACs from GitLab in whatever format you prefer:

Details

s IFACs @ o g 2

P GNU GPLv3 -0 171 Commits ¥ 1Branch & 0Tags [2.1 MB Files

Gene filtering, analysis, and conversion.

/

¥

master gFACs History @ Findfile & ~

g Update indexrst
Madison Caballero authored 23 minutes ago Download zip

Download tarbe2
B README I \
Dawrload tar
Name Last commit Last update
W docs

B format_scripts

2. Place the entire folder onto your system and extract components. You should have a screen that looks like this:

https://www.perl.org/
https://bioperl.org/
https://gitlab.com/PlantGenomicsLab/gFACs

gFACs Documentation, Release 1.0.0

3. To test to see if it works, perform the simple command of:
perl gFACs.pl

The command line manual should appear. If so, congratulations! If not, a common error that occurs is that bioperl
libraries are not loaded. If you have issues, feel free to send an issue request on GitLab!

4 Chapter 1. Installation

CHAPTER 2

Supported Input Formats

There are many different programs that utilize a gff or gtf style format. Each has its own inclusion rules and formatting
guidelines. Therefore, a true universal gff/gff3/gtf file converter that requires no user input may be an impossible task.
gFACs requires the user to define the application source and version. If you do not find you input format, look into
the support script format_diagnosis.pl. If your file is made up of many different formats merged together, I suggest
breaking it apart. If you want a format added (especially if it is a well-known one) let me know and I will likely create
one!

The format is specified in the gFACs command by a -f [code] flag. It is a mandatory flag and the code will fail without
it. These codes are listed out below with notes and can also be seen in the command line manual. For an example of
the command with a proper format flag, see any of the sample runs!

BRAKER: braker_2.05_gtf braker_2.05_gff braker_2.05_gff3 braker_2.0_gff3 braker_2.0_gff braker_2.0_gtf
braker_2.1.2_gtf

MAKER: maker_2.31.9_gff

Maker may provide other information such as blastx and protein2genome information. Currently, only
maker models of genes and exons will be considered.

PROKKA: prokka_1.11_gff

GMAP: gmap_2017_03_17_gff3
GENOMETHREADER: genomethreader_1.6.6_gff3
STRINGTIE: stringtie_1.3.4_gtf

GFFREAD: gffread_0.9.12_gff3

EXONERATE: exonerate_2.4.0_gff

EVIDENCE MODELER: EVM_1.1.1_gff3

CoGe: CoGe_1.0_gff

GFACS: gFACs_gene_table gFACs_gtf

You can input a gene table from gFACs, any version. However, the prefix on the input will NOT be
retained.

https://github.com/Gaius-Augustus/BRAKER
http://yandell-lab.org/software/maker.html
https://github.com/tseemann/prokka
http://research-pub.gene.com/gmap/
http://genomethreader.org/
https://ccb.jhu.edu/software/stringtie/
http://ccb.jhu.edu/software/stringtie/gff.shtml
https://www.ebi.ac.uk/about/vertebrate-genomics/software/exonerate
https://evidencemodeler.github.io/
https://genomevolution.org/coge/
https://gitlab.com/PlantGenomicsLab/gFACs

gFACs Documentation, Release 1.0.0

NCBI: refseq_gff - only CDS taken.

For those who are curious, each format has a special conversion script that transitions the input into the gene table.
These are the scripts found in the format_scripts folder that comes along with gFACs. If you are feeling adventurous,
you can make your own conversion script that creates the gene table and simply run gFACs with the gene table format
code.

6 Chapter 2. Supported Input Formats

https://www.ncbi.nlm.nih.gov/genbank/genomes_gff/

CHAPTER 3

About

gFACs was created during the annotation of the megagenome of loblolly pine. In dealing with gene models created
from different softwares and alignment tools, we needed a way to filter and merge these models. Unfortunately, no
such system existed so gFACs was designed and developed to fill this niche. The applications that generate gene
model evidence include aligners and ab initio gene prediction software. These programs report their predictions
and alignments in a similar structured gene transfer format (gtf) or general file format (gff) however there is little
consistency across these standards. You can read more about the general structures here. gFACs will filter and
select final gene models based upon user provided filters regarding their structural attributes. In addition, gFACs can
optionally consider functional annotation from the EnTAP application as an additional filter to define true models.

The flow of gFACs.pl is controlled by the master script gFACs.pl. Flags and input files are processed by the master
script, and a series of task-specific scripts are called upon to edit and filter gene or alignment models.

| Input file |

Format

scripts

1 %
N7

Gene_table.txt

The primary input is an annotation file, either in gene transfer format (gtf) or general feature format (gff/gff3). Since
these file types are variable across the applications that generate them, formats designed to fit a particular software’s

https://useast.ensembl.org/info/website/upload/gff.html

gFACs Documentation, Release 1.0.0

output must be created. Specific scripts in the folder format_scripts/ are used to convert the input into a median file
type called gene_table.txt.The user is able to input their specific file type but they must inform gFACs about the format
of the file. For specific formats and how to provide this information, see the supported input section on it.

~

3.1 The gene table

gene_table.txt (referred to also as the gene table) is specfiic to gFACs and is created to hold the minimum amount of
information needed to uniformly apply the filtering options.

The gene table is the most important file for this program as it is used and edited in every step. Each flag or task in
evaluation needs the format of the gene table to work successfully. The gene table will always have the gene models
or alignments that are retained. Here is an example of gene table format:

The columns go:

1. Gene part
. Length

2

3. Start
4. Stop
5. Strand
6

. ID (8th column from input file)

8 Chapter 3. About

https://gfacs.readthedocs.io/en/latest/Getting%20Started/Formats.html

gFACs Documentation, Release 1.0.0

7. Scaffold/chromosome (needed for fasta commands)

Further scripts expect the gene table to be in the output directory called gene_table.txt. If you are using a prefix, it will
look for the file with the prefix. The task-scripts also create their own files, notably if things are being separated, such
as potential splice variants. However, the retained genes will always be renamed or concatenated into the master gene
table.

3.2 Intron prediction

The gene table provides intron information that is not always found in the input file. Even if the input format does
provide introns, they will be recalculated based on the positions of predicted exons. In the format step, a temporary file
is created that will terminated upon step completion. The purpose is to add a divider between gene families. The ###
line in the gene table allows for a clear break between different genes. The script then revisits the temp file, calculates
introns, and makes final formatting shifts.

Here is an example of the temporary file:

Introns are the sequence between exons. Lengths and start and stop coordinates are calculated based on exon in-
formation. To accomplish this, exon lengths are pushed into an array and called by position. This method is more
universally reliable but prone to errors involving overlapping exons. This can be resolved with a flag —splice-rescue
which I recommend.

exon exon exon
@exons= 1 300 500 700 900 1000
intron intron

3.3 Task scripts

Once the formatting has completed, and the gene table has been created, filtering as designated by flags is done
cyclically on the gene table until the final set of genes is produced. The order of filtering flags is pre-determined
although this does not change the final result. For example, whether or not monoexonic genes are removed first or last
will not change how many monoexonics appear in the final iteration of the gene table (spoiler alert: none).

Once all filtering is done, other commands are activated that involve processing or analyzing the final sets. This
includes statistics, analysis of splice types, or distributions.

3.2. Intron prediction 9

gFACs Documentation, Release 1.0.0

Distribution
Distributions outputs

Always done last

Controlled by flags /

2
» — Always done last

3 \ Always done last
1
i | |

Editing/ filtering flags

Gene_table.txt | <+ Edits
a4

3.4 The log file

In addition to the gene table, the gFACs_log.txt file is created every time the script is run, no exceptions. If a prefix is
included, the log will have this prefix. The log file is reported by the master script and is appended with information
regarding filtering at each step. It will also report what flags are being activated and the very specific corresponding
system commands.

The log may be helpful for the user to see what is happening and the results of a particular filter. It is also helpful for
noticing bugs and verifying script efficacy. gFACs supports readable and understandable log files!

10 Chapter 3. About

CHAPTER 4

Filter flags

As the title suggests, these flags edit or remove content from the input file. Flag use depends on whether additional
resources are provided such as fasta file or EnTAP annotation file.

4.1 Basic flags

These are flags that can be run on any input without the addition of a fasta or EnTAP file. Given that, these flags are
not capable of performing sequence level analysis. You can include as many flags as you want in any order. However,
the order in which the flags are run is predetermined by the gFACs.pl script. This section is designed to tell you what
the flags do conceptually. This is not the true order. See the log file for the order as the log is printed in sequence.

4.1.1 -p [prefix]

All files created will have your designated prefix. For example, if you provide the prefix “test”, your gene table will
be called test_gene_table.txt. Every file (even temporary files) will have this prefix. However, it is not a mandatory
argument.

4.1.2 —false-run

This flag allows for the user to understand the effect of filters on the original input without an additive effect. Before
committing to a gFACs run, it may be important to understand what gFACs is planning on removing from the original
set of models. When gFAC:s filters, it removes sequentially from a shrinking pool of models. However, it may be
important to know how many gene models would be removed from the original set. How many overall do not have a
stop codon? How many overall are of a certain CDS length?

This flag allows gFACs to run normally but always resets to the original set of genes in the gene table. Therefore, the
log will print what is removed and retained but never follows through with filtering. Resulting files will be the gene
table completely unedited and the log file will reflect resetting numbers.

NOTE: This flag does NOT keep the results of splice rescue nor unique genes only. This is problematic with overlap
when isoforms or multiple RNA evidence models are within the same called gene. Sequence pull filters like in-frame

11

gFACs Documentation, Release 1.0.0

stop codon, fasta creation, or analysis can then be wrong. For example, when setting in-frame stops to 0, all genes with
isoforms will print one after another in a long sequence string that will have as many stop codons as models presented.
This may create the appearance of increased removal of models. To work around this problem, run classic gFACs on
your set using --splice-rescue and --unique-genes-only. Then use --false-run on that parsed gene table output. Feel
free to contact me if you have problems!

4.1.3 —-no-processing

The following occurs by DEFAULT. Use —no-processing to opt out.

Processing involves two scripts: task_scripts/overlapping_exons.pl and task_scripts/splice_variants.pl. The first ana-
lyzes the gene table for overlapping exon space and then the second analyzes genes with overlapping exon space for
evidence that these are separate transcripts or models.

Take this particular gene for example:

Although three exons are called, they overlap as the third is supported by a different parent transcript. The first two
claim an intron while the third spans over that particular intron like this:

Intron prediction, when not taking into account that these are separate models of the gene space, would be wrong. To
solve this, genes that show exon overlap are separated out into their own file. Then they are evaluated.

12 Chapter 4. Filter flags

gFACs Documentation, Release 1.0.0

Input gene_table.txt

|

overlapping_exons.pl

—

overlapping_gene_table.txt non_overlapping_gene_table.txt
splice_variants.pl Renamed
transcripts.txt gene_table.txt

|

Concatenated to
-\-*""'F gene_table.txt

The way splice variants are confirmed is due to the labeling on the 6th column in the gene table. If an exon has a
different transcript ID (often labeled t1, t2, t3...) then the exon is separated into its own “batch”. What was originally
“gene22” with three separate transcripts then becomes gene22.1, gene22.2, and gene22.3.

Gene 1 Exon 4

Gene 1.2 Exon 4

Introns are then recalculated for each of the separate isoforms. If some of the models are incomplete, they can be
filtered out with other flags since they are now treated as separate “genes”. (This is because they are separated by a
#i## partition).

Passing genes will remain in the gene table. Results of this filter are printed in the log.
To resolve transcripts back to unique genes (selecting largest, if available, or first transcript) can be done with the
--unique-genes-only flag.

Following this step, another script called task_scripts/gene_table_fixer.pl is implemented. This is done to check that
exons and introns are in positive strand ascending order. Without it, printing the fastas will be problematic. It is done
regardless of whether or not you use splice rescue.

4.1. Basic flags 13

gFACs Documentation, Release 1.0.0

4.1.4 -no-gene-redefining

The following occurs by DEFAULT. Use —no-gene-redefining to opt out. Genes that are incomplete in the annota-
tion such that it appears they start or end with an intron are labeled as:

COMP : Complete. Note this does NOT mean there is a start and in-frame stop codon. 3*_*INC : 3’ incomplete
5*_*INC : 5" incomplete 3*_*INC+5*_*INC : Both gene ends are incomplete

Incompleteness checks do NOT require a fasta and therefore do not judge incompleteness based on codon content. For
examples of this, see the filters directly below for removing incompletes.

Genes will be trimmed to reflect available CDS in the first step following format conversion but incomplete labels
will remain to identify the modification made. This is opt-out using --no-gene-redefining. All filters will be applied
normally regardless of choice to trim. Note that a gene labeled as a 3’ incomplete will always fail a start codon check
even if the first three nucleotides of the trimmed gene is an ATG (or alternate). Same for 5 incompletes and stop
codon checks.

4.1.5 —-rem-3prime-incompletes

This option is controlled by the script task_scripts/remove_starting_introns.pl. It is designed to pull out genes that start
with “intronic” space. This is almost always because of missing evidence due to missing scaffold sequence. Genes are
automatically trimmed unless —no-gene-redefining is used.

Take this for example:

The very first exon begins 86 nucleotides into the proposed gene space. You can also see that the gene “begins” at
position 1 in super417. This particular model came from BRAKER 2.0.

This script finds genes where gene start and first exon start do not agree. Passing genes will remain in the gene table.
Results of this filter are printed in the log.

NOTE: This script takes into account directionality. Meaning a positive strand gene without a start intron would occur
at the start of the gene (all gene coordinates are positive stranded). In a negative strand gene, missing the start intron
would occur at the end of the gene.

NOTE: This filter does not take into acount sequence. To remove all incompletes with codons in mind, combine with
—rem-genes-without-start-codon.

4.1.6 —-rem-5prime-incompletes

This option is controlled by the script task_scripts/remove_ending_introns.pl. It is nearly identical to removing start
and also takes into account strandedness and directionality. For another example in the exact same BRAKER 2.0 gene
table:

14 Chapter 4. Filter flags

gFACs Documentation, Release 1.0.0

Here you can see that the last exon ends at 1887 but the gene claims to end at 4318.

Sometimes this occurs because of the scaffold ending as before, but further fasta involvement can find incomplete
genes due to codon evidence.

Passing genes will remain in the gene table. Results of this filter are printed in the log.

NOTE: This filter does not take into acount sequence. To remove all incompletes with codons in mind, combine with
—rem-genes-without-stop-codon.

4.1.7 -rem-5prime-3prime-incompletes

Removes genes that are BOTH 5° and 3’ incomplete (3_INC+5_INC). Genes that are 3’ incomplete but 5’ complete
and vice versa are kept in the gene table. Results of this filter are printed in the log.

4.1.8 -rem-all-incompletes

Performs the tasks of --rem-3prime-incompletes and --rem-5prime-incompletes. See above for what each task does
individually. Passing genes will remain in the gene table. Results and commands of this filter are printed in the log as
if each command was run separately.

4.1.9 -rem-monoexonics

Removes monoexonics based off the presence of introns. All multiexonic genes then remain in the gene table. The
script that does this command is task_scripts/remove_monoexonics.pl.

4.1.10 -rem-multiexonics

Remove multiexonics based off the presence of introns. All monoexonics genes then remain in the gene table. The
script that does this command is task_scripts/remove_multiexonics.pl.

4.1.11 -min-exon-size [number]

Default: 20

Creates a filter to remove genes with exons below a certain size. The script that performs this command is
task_scripts/minimum_exon.pl. If you do not provide a following number, 20 is used as a benchmark for an exon
that is suspiciously too small.

Passing genes will remain in the gene table. Results of this filter are printed in the log.

4.1. Basic flags 15

gFACs Documentation, Release 1.0.0

4.1.12 —-min-intron-size [number]

Default: 20

Creates a filter to remove genes with introns below a certain size. The script that performs this command is
task_scripts/minimum_intron.pl. If you do not provide a following number, 20 is used as a benchmark for an in-
tron that is suspiciously too small. However, it might be technically possible to have introns that are less than 20
nucleotides.

Passing genes will remain in the gene table. Results of this filter are printed in the log.

4.1.13 —min-CDS-size [number]

Default: 74

Creates a filter to remove genes with a coding sequence (CDS) below a certain nucleotide length. Introns do not count,
only exon sequence size. The default is based off the smallest known gene and will be used if no input is provided.

Passing genes will remain in the gene table. Results of this filter are printed in the log.

4.1.14 -—unique-genes-only

This option will collapse directly overlapping genes and resolve transcripts created using -—splice-rescue.

When using --splice-rescue, multiple transcripts are created that represent the same gene. They may be isoforms of
one gene or the exact same gene model repeated due to multiple pieces of evidence. Since separation treats each
transcript as if it was its own gene for statistics and file-creation steps, this step will return only unique genes.

This is done by the script task_scripts/unique_genes.pl. It separates out transcripts denoted by their .1, .2, etc...
modification. For those representing the same gene, the largest transcript is selected if available. Otherwise it will just
take the first one.

When not dealing with transcripts, if two separate genes with different IDs share the exact same space, the first one
numerically will be chosen. This only affects genes with 100% overlap where each gene is the same size and starts
and ends at the same coordinates.

This step is done before any outputs are created such as statistics, fastas, output tables, or gtf files. Unique genes will
remain in the gene table. Results of this filter including genes in, transcripts present, unique transcripts, non-transcript
duplicates, lost, and final returned genes are printed in the log.

4.2 EnTAP required flags

4.2.1 —-entap-annotation /path/to/your/final_annotation.tsv

Provide the path to the output of the protein annotation. The first column should be the name of a gene that matches
the gene name in the gene table. It will run with other formats but I encourage using a gFACs format input (see FAQ
for EnTAP run details). Use gFACs to filter an original annotation, functionally annotate with EnTAP, then use the
gFACs output and EnTAP output to filter again.

All versions of EnTAP (including future versions) should be compatible.
If issues arise, contact me at the gFACs GitLab.

The annotation should look something like this:

16 Chapter 4. Filter flags

gFACs Documentation, Release 1.0.0

4.2.2 —-annotated-all-genes-only

Only genes that have an associated similarity search OR EggNOG annotation are kept. Done by the script
task_scripts/annotated_all_genes_only.pl. Passing genes will remain in the gene table. Results of this filter are printed
in the log.

4.2.3 —-annotated-ss-genes-only

Only genes that have an associated similarity search annotation are kept. Done by the script
task_scripts/annotated_ss_genes_only.pl. Passing genes will remain in the gene table. Results of this filter are printed
in the log.

4.3 Fasta required flags

These scripts require that there is a fasta, because sequence is being evaluated. The gFACs.pl script will index your
fasta, and then task scripts that require sequence will find and use that index. If there is already an index, the indexing
step will be skipped.

To specify a fasta:

4.3.1 -—fasta /path/to/your/nucleotide/fasta.fasta
Bioperl will create an index with the ending “.fasta.idx”. It is a fairly fast process. The file may end with .fa or .fasta,
but no other naming formats can be recognized.

NOTE: This fasta MUST MUST MUST be the same fasta used when making your particular gff3/gtf/gff. Bioperl
needs to recognize the name on the fasta info line to the sixth column in the gene table.

4.3.2 —-canonical-only
Analyzes introns for a canonical splice sites (GT-AG on the positive strand). The script that performs this task is
task_scripts/canonical_only.pl.

To pass, all introns in a gene must have canonical splice sites. Monoexonics will also pass this filter because they do
not have the evidence to be pulled out. Of course, monoexonic genes can be removed by —rem-monoexonics filter.

Genes that pass this filter are kept in the gene table and results are printed in the log.

NOTE: Splice sites take into account directionality and reverse compliment.

4.3. Fasta required flags 17

gFACs Documentation, Release 1.0.0

4.3.3 -rem-genes-without-start-codon

The first three nucleotides of the sequence are analyzed to match ATG. With this flag alone, no alternate start
codons are taken into account (use --allow-alternate-starts to include alternate starts). This task is performed by
task_scripts/rem_genes_without_start.pl. Again, gene directionality is considered.

NOTE: Genes marked 5’ incomplete are assumed NOT to have a start codon and are removed regardless if the gene
starts with a Met.

Genes that pass this filter are kept in the gene table and results are printed in the log.

4.3.4 -—-allow-alternate-starts

If --rem-genes-without-start-codon is used, the start codons of GTG and TTG will also be in-
cluded alongside ATG. This may be useful in Prokaryotic annotations. This task is performed by
task_scripts/rem_genes_without_start_alternate.pl.

Outputs are identical to --rem-genes-without-start-codon.

4.3.5 -rem-genes-without-stop-codon

The last three nucleotides of the sequence are analyzed to match TAA, TAG, and TGA. Currently, all end codons are
assumed to be within the reported gene. This task is performed by task_scripts/rem_genes_without_stop.pl. Again,
gene directionality is considered.

Following this step, a script called task_scripts/frame_detection.pl is run. It is designed to pick out any genes that
technically have a stop codon as the last three nucleotides, but it is not real because the codon is actually out of frame.
These are rare occurrences, often happening on negative strand genes that run into the beginning of a scaffold where
the first three nucleotides of the scaffold are a reverse complement stop codon. To solve this, any gene whose CDS is
not divisible by 3, is removed.

NOTE: Genes marked 3 incomplete are assumed NOT to have a stop codon and are removed regardless if the gene
has a terminating in-frame stop.

Genes that pass this filter are kept in the gene table and results are printed in the log.

4.3.6 -rem-genes-without-start-and-stop-codon

Removes genes that lack BOTH a start and stop codon. Genes that have a start codon but no stop and vice versa are
kept in the gene table. Results of this filter are printed in the log.

4.3.7 —allowed-inframe-stop-codons [number]

Default: O

Creates a filter that removes genes based on the presence of a stop codon that is not the last codon in the gene. For
example, setting this parameter as 1 will allow one other stop codon between the methionine and the terminating stop
codon.

If you are not filtering for start and stop codons, this will still work so long as there are stop codons within the amino
acid sequence but not necessarily at the end.

Genes that pass this filter are kept in the gene table and results are printed in the log.

18 Chapter 4. Filter flags

gFACs Documentation, Release 1.0.0

4.3.8 —-splice-table

To understand splice usage, a splice-site table is printed to the log that tells the frequency of every type of splice site
used. This command is performed by task_scripts/splice_table.pl.

The splice table will look something like this:

This splice table will show you everything present in the file adjusted to lower case letters including N-bases. If you
specify canonical genes only, the table will only show you gt_ag counts.

4.3.9 -nt-content

The CDS (all exon sequences) is analyzes for GC, AT, and N content by percent composition. This information is
printed to the log. Here is an example of the output:

4.3. Fasta required flags 19

gFACs Documentation, Release 1.0.0

20 Chapter 4. Filter flags

CHAPTER B

Output flags

5.1 Basic output flags

These are output flags that do not require the input of any fasta or EnTAP files.

5.1.1 -statistics

Statistics will be run on the gene table and printed to statistics.txt. This command is performed by
task_scripts/classic_stats.pl. If a prefix is used, the statistics file will be named accordingly.

These are all the potential statistics in the reported format:

Number of genes: Number of monoexonic genes: Number of multiexonic genes:

Number of positive strand genes: Monoexonic: Multiexonic:

Number of negative strand genes: Monoexonic: Multiexonic:

Average overall gene size: Median overall gene size: Average overall CDS size: Median overall CDS size: Average
overall exon size: Median overall exon size:

Average size of monoexonic genes: Median size of monoexonic genes: Largest monoexonic gene: Smallest monoex-
onic gene:

Average size of multiexonic genes: Median size of multiexonic genes: Largest multiexonic gene: Smallest multiexonic
gene:

Average size of multiexonic CDS: Median size of multiexonic CDS: Largest multiexonic CDS: Smallest multiexonic
CDS:

Average size of multiexonic exons: Median size of multiexonic exons: Average size of multiexonic introns: Median
size of multiexonic introns:

Average number of exons per multiexonic gene: Median number of exons per multiexonic gene: Largest multiexonic
exon: Smallest multiexonic exon: Most exons in one gene:

21

gFACs Documentation, Release 1.0.0

Average number of introns per multiexonic gene: Median number of introns per multiexonic gene: Largest intron:
Smallest intron:

The following columns do not involve codons: Number of complete models: Number of 5* only incomplete models:
Number of 3’ only incomplete models: Number of 5’ and 3’ incomplete models:

If your set is only monoexonics, a smaller version of the statistics will be printed that only contain the categories where
monoexonic genes are evaluated.

5.1.2 -statistics-at-every-step

A statistical analysis of the gene table is run following every filtering step. This information is in the same format as
regular --statistics but prints to the log following the information line for each flag. To ensure statistics.txt is created
at the end, make sure to include -—statistics in your command.

5.1.3 —create-simple-gtf

Identical to --create-gtf, but lacks start and stop codon information. This option is significantly faster.

5.1.4 —create-gff3

An Ensembl v3 gff3 gff3 will be created that contains mRNA, exon, and intron information. ID, Name, and Parent
information will be shown.

5.2 Fasta required output flags

In order to create fasta required outputs, you will need to provide a fasta input. See how to here. If a proper fasta is
provided, you unlock all these flags:

5.2.1 —get-fasta-with-introns

The nucleotide fasta sequence is printed to genes_with_introns.fasta. The genes are always printed on the positive
strand. This fasta will contain the intron sequences so number of genes printed will be the same for both with and
without introns. The header for each sequence is the fifth column of the gene line in the gene table.

This command is performed by task_scripts/get_fasta_with_introns.pl. If a prefix is specified, the output fasta will be
named accordingly.

5.2.2 -—get-fasta-without-introns

The nucleotide fasta sequence is printed to genes_without_introns.fasta. The genes are always printed on the positive
strand. This fasta will not contain the intron sequences. The header for each sequence is the fifth column of the gene
line in the gene table.

This command is performed by task_scripts/get_fasta_with_introns.pl. If a prefix is specified, the output fasta will be
named accordingly.

22 Chapter 5. Output flags

https://useast.ensembl.org/info/website/upload/gff3.html
https://gfacs.readthedocs.io/en/latest/Flags/Fasta%20Required%20Flags/index.html#fasta-path-to-your-nucleotide-fasta-fasta

gFACs Documentation, Release 1.0.0

5.2.3 —get-protein-fasta

A protein fasta of the genes is created called genes_without_introns.fasta.faa. Genes never include the introns (because
of course not). All genes are printed in the N-terminus to C-terminus orientation (so M would be first) but reverse
complementation of the negative strand is considered to choose the correct amino acids. Stop codons are depicted as
*. The header for each sequence is the fifth column of the gene line in the gene table.

This command is performed by task_scripts/get_protein_fasta.pl. If a prefix is specified, the output fasta will be named
accordingly.

5.2.4 —create-gtf
A gtf file called out.gtf is created. If a prefix is specified, the gtf file will have it. This step is done with two scripts,
task_scripts/add_start_stop_to_gene_table.pl and task_scripts/gtf_creator.pl.

Since GTF files (as a general rule) require start and stop codon information, the locations of the start and stop codon
(if found) are added to the gene table and the final gtf. CDS scores that correspond to an exon are retrieved from the
original input file if found and the “exon” attribute is returned to “CDS”. Introns currently remain.

The source line does say gFACs. Not to steal the credit, it just might be helpful to know where the information is
coming from particularly after filtering and rearranging.

5.3 Distributions flags

gFAC:s is capable of reformatting annotations into formats for distributions. It can provide distribution summaries or
raw data. To signify distributions, a single flag followed by options may be used:

5.3.1 —distributions [option] [option] ...

Activates the ability to create distributions. This task is always done last on the final version of the gene table. If a
prefix is specified, all output files will reflect that.

All outputs are printed in a .tsv file that can be opened for viewing on excel or R. The options available for distributions
are as follow:

5.3.2 exon_lengths

Creates the file exon_lengths_distributions.tsv. In it, a range of exon lengths and the corresponding representation is
printed. In this example, --min-exon size was set to 40, which is reflected in the numbers:

5.3. Distributions flags 23

gFACs Documentation, Release 1.0.0

The above data, when rendered into a histogram using R, looks like this:

Exon distribution : Protea

400 600 800
| | |

Frevalence

200
|

0-9 390-399 910-919 1490-1499 2140-2149 2790-2799

Exon Lengths

Notice that the curve is bimodal, which is indicative of the mono and multiexonic genes. Utilizing two runs one with
--rem-monoexonics (red) and one with --rem-multiexonics (yellow) you can see the curves are indeed the difference
in gene type where smaller exon lengths are in multiexonic genes:

24 Chapter 5. Output flags

gFACs Documentation, Release 1.0.0

Exon distribution : Protea

400 600 800
| | |

Prevalence

200
l

0-9 320-329 750-759 1230-1239 1760-1769 2290-2299 2820-2829 3350-3359

Exon Lengths

Advanced: Zoom of exon lengths can be controlled with a trailing number. This changes the size of the step. In the
example above, the range of values as the cluster for the distribution is 10, but it can be controlled like this:

exon_lengths 5
This would change the above table to:

The default, if no number is chosen, is decided by the maximum exon length of the provided data. For a maximum
length that is less than 100 nucleotides, the step is 1. For a maximum value of exon length that is more than 100 but
less than 1,000, the step is 10 and so on.

Changing this step number should not drastically change the time it takes to run. However, the file will be larger and
have more lines when a smaller number is used!

5.3.3 intron_lengths
Creates the file intron_lengths_distributions.tsv. In it, a range of intron lengths and the corresponding representation
is printed. The outputs and applications are identical to exon_lengths.

Advanced: Zoom of intron lengths can be controlled with a trailing number. This changes the size of the step. It can
be controlled like this:

intron_lengths 20

The default, if no number is chosen, is decided by the maximum intron length of the provided data. For a maximum
length that is less than 100 nucleotides, the step is 1. For a maximum value of intron length that is more than 100 but
less than 1,000, the step is 10 and so on.

Changing this step number should not drastically change the time it takes to run. However, the file will be larger and
have more lines when a smaller number is used!

5.3. Distributions flags 25

gFACs Documentation, Release 1.0.0

5.3.4 CDS_lengths

Creates the file CDS_lengths_distributions.tsv. In it, a range of CDS lengths and the corresponding representation is
printed. The outputs and applications are identical to exon_lengths.

Advanced: Zoom of CDS lengths can be controlled with a trailing number. This changes the size of the step. It can be
controlled like this:

CDS_lengths 25

The default, if no number is chosen, is decided by the maximum CDS length of the provided data. For a maximum
length that is less than 100 nucleotides, the step is 1. For a maximum value of CDS length that is more than 100 but
less than 1,000, the step is 10 and so on.

Changing this step number should not drastically change the time it takes to run. However, the file will be larger and
have more lines when a smaller number is used!

5.3.5 gene_lengths
Creates the file gene_lengths_distributions.tsv. In it, a range of gene lengths and the corresponding representation is
printed. These sequence lengths do include all introns. The outputs and applications are identical to exon_lengths.

Advanced: Zoom of gene lengths can be controlled with a trailing number. This changes the size of the step. It can be
controlled like this:

gene_lengths 1000

The default, if no number is chosen, is decided by the maximum gene length of the provided data. For a maximum
length that is less than 100 nucleotides, the step is 1. For a maximum value of gene length that is more than 100 but
less than 1,000, the step is 10 and so on.

Changing this step number should not drastically change the time it takes to run. However, the file will be larger and
have more lines when a smaller number is used!

5.3.6 exon_position

Analyzes and creates an output that evaluates exon position in a gene to its size. Position meaning which exon comes
first. In positive strand genes, these are in the order they appear in the gene table. For reverse strand genes, the first
exon is the last one to appear in the gene table. Creates the output file exon_position_distributions.tsv. The output
looks like this:

Exon position goes from 1 to whatever the maximum number of exons in one gene is. It will match what a statistics
output would say. The second column is how many exons are representative of that position. The first exon support
(70,923 above) will always be equal to the overall number of genes because even monoexonics have a first exon. (You
can remove those, of course). You can also say there are 70,923 first exons, 42,161 second exons, etc. ..

The third column is how many genes have the first column number as their maximum number of exons. So, in the last
row shown, there are 1,656 genes that have 6 total exons. There are 28,762 monoexonics then as well by this same
logic.

The third and fourth columns are average and median size of an exon at that positon. The last two are minimum and
maximum. If you use a minimum exon parameter (as I did above) it will be reflected!

26 Chapter 5. Output flags

gFACs Documentation, Release 1.0.0

5.3.7 exon_position_data

Provides the raw data in data_intron_position_distributions.tsv. on exon positions alongside
exon_position_distributions.tsv produced from the command above. This set of data can be used to make
boxplots.

The data appears like this:

The first column is the exon position and the following values in the row are the sizes of exons (non-sorted). The row
will have as many columns as exon position data points. Notice how 32 (the last visible row) has only 5 numbers,
showing there are only 5 genes that have a 32nd exon where the values are the sizes.

5.3.8 intron_position

Intron positioning works identically to exon positions. However, this will only include multiexonic genes! All header
names have the same meaning as exon position.

Creates the output file intron_position_distributions.tsv.

5.3.9 intron_position_data

Intron position raw data works identically to exon positions and will also only include multiexonic genes. Creates the
output file data_intron_position_distributions.tsv and the default intron_position_distributions.tsv.

A sample of a boxplot that can be created:

5.3. Distributions flags 27

gFACs Documentation, Release 1.0.0

Intron Order to Size

mmmmm
nnnnnnnnnnnnnn

———

IIII\I\ IIIIIIIIIIIIIIIII![LlLI\IIII\I\I\\\\I\
I -]

['
;;;;;;;;;;;;

1000
1
=]
©
o o

oogo O O

600
1
|

== DD CODCO OO0 @® O 00 0O O ¢— 48

oXare OO0 0 00 O oOwd
=4C000 OOm ©O @@ @

Intron size

200
|
I
-

T T T
N - JHF S s
+ 1

TrTTTTTTTTTTT TT Tl T
1 3 65 7 9 1 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 &7

Order of Intron

For how I created the boxplot, feel free to contact me!

5.4 Compatibility flags

Just as the gff3/gft/gtf file formats follow their owns rules, so do other software in needing specific input formats.
Although the gFACs gtf is fairly standard, a few modifications must be made before it can safely be used within other
programs. This includes transitions to other formats such as gff or gff3!

Several formats are alrady compatible by default. —create-gtf output is compatible with Jbrowse and protein/nucleotide
FASTAs are compatible with EnTAP!

These options are still being developed and user input is more than welcome! Do you not see a format you would like
added? Let me know!

To specify the compatibility arguments, use this flag:

5.4.1 —-compatibility [option] [option] etc...

Allows the creation of software compatible files. Available format options are:

5.4.2 SnpEff

A gff file called snpeff format.gff will be created that can be used for SnpEff build. This format can be used in the
default.

5.4.3 EVM_1.1.1_gene_prediction

A gff file called EVM_1.1.1_gene_prediction_format.gff will be created that can be used as a gene prediction format
for EVidence Modeler.

28 Chapter 5. Output flags

https://gfacs.readthedocs.io/en/latest/Flags/Fasta%20Required%20Flags/output.html#create-gtf
http://snpeff.sourceforge.net/
https://evidencemodeler.github.io/#Preparing_inputs

gFACs Documentation, Release 1.0.0

5.4.4 EVM_1.1.1_alignment

A gff file called EVM_1.1.1_alignment_format.gff will be created that can be used as an alignment format for EVi-
dence Modeler.

5.4. Compatibility flags 29

https://evidencemodeler.github.io/#Preparing_inputs
https://evidencemodeler.github.io/#Preparing_inputs

gFACs Documentation, Release 1.0.0

30 Chapter 5. Output flags

CHAPTER O

FAQ

Under construction. See gitlab issues or contact through gitlab with issues you have.

6.1 Why are there negative intron/exon lengths?

Coming soon.

6.2 Why don’t incompletes match start and stop exon statistics?

Coming soon.

6.3 How do | include EnTAP results?

Coming soon.

6.4 All models were removed!

Coming soon.

For further issues, report to gitlab.

31

gFACs Documentation, Release 1.0.0

32 Chapter 6. FAQ

CHAPTER /

format_diagnosis.pl

To determine what format you have, if it is ambiguous, format_diagnosis.pl may be able to help. The script will output
information that you can compare with the table below to see if another format may work for you. To use the script:

perl format_diagnosis.pl [input_file]

The output will look something like this:

The data tells you what information is present followed by the observed quality of the feature. In the above output, the
line of the “gene” feature, comes up 278 times and matches that with mRNA. This is not always the case. It also has
exon lines and CDS lines but NOT at the same frequency. So CDS will be the more important feature.

Given the comparison, you could choose several formats that might work. braker_2.05_gff3, braker_2.05_gtf,
gFACs_gtf, and several more.

FORMAT properties:

NOTE: In this table, know that each format example is NOT the same file. The information inside the [brackets] is
just an example number and judgement on format should be made from ratios. Your file will not fit the actual numbers
in the brackets above, but the ratio between a format’s exon to CDS counts may be the same. These were derived from
my own collection of sample files across different species and projects.

33

gFACs Documentation, Release 1.0.0

start_ | stop_

codon |codon Other third column

Format partition| gene | mRNA | exon CDS | intron

Yes Yes Yes Yes

6025 [7eS18026) won | 317751 | pooagy | MO0 | Noll | Noo] 0

gmap_2017_03_17_aff3

Yes Yes Yes Yes Yes Yes Yes
braker_2.05_gff3 No (0] | (a77s7) | (202071 | (1372207 | [(137280) |[104200] | [32574] |[22938]

{initial single internal terminal)

Yes Yes Yes Yes Yes (terminal internal initial
braker .05 | Nol0] | [azzg7 | NolO) | NOWO) | (437580 |(104800)| [32571] |[32036]| transcrit single)
Yes Yes Yes Yes Yes Yes [(initial single transcript terminal
braker_2.05_gif NO[O] | pa77s7y | MNOIO1 | (y37280) | (137280) |[104808) | [32571] | [22036] internal)
Yes Yes Yes Yes Yes Yes Yes
braker_2.0_gff3 No [0 | 1sn35a) | [53356] | [270267) | [270267) |[209203] | [61583] | [61394] 0
Yes Yes Yes Yes Yes)
braker_2.0_gff NolOl | (gpasg | MO 0D | NoIOl | 5onog7) |[20oz03)| (61583] | [61804) (transeript)
Yes Yes Yes Yes Yes Yes)
braker_2.0_gtf N0 | (spase | MO IOV | o70267) | [270267) |[200203)| (61583] | [61804) (franscript)
{tranzlated _nucleotide_match
Yes Yes Yes Yes Yes contig three_prime_UTR
maker_2.31.8_gff Mo [0] Mo [0] | Mo [0] five_prime_UTR
[118474] | [34322] | [34322] | [64118] | [p4118] expressed. sequance, maich
match_part protein_match)
genomethreader_1.6.6_ Yes Yes Yes Yes Yes [three_prime._cis_splice_site
o3 [508452] | [508452) |[816371]|[1132140]| (511162) | NO[O | No[O] | NO [0l | “rue prime cis spiice site)
Yes Yes Yes
afiread_0912_0f3 | Nol0] | Nolo] | ui%5s | anse | ebasty | No[® | No[o] | No[o] 0

exonerate_2.4.0_gff No[0] |Yes[2126)] Mo[Q] [ves [3843]Yes [3843] [.;';619?] No [0] | Mo [0] (zimilarity spliceS splice3)

Yes Yes Yes Yes
EVM_1.1.1_git3 NolO] | 20672 | (20672 | [e640a) | [s4n | NO[O1 | Nel0l | No[0] 0
Yes Yas Yes Yes Yes
gFACs_gtt No (O] | 14o7ggy | NolO | Mol | y4pane) | (67588 | [a2708] | [42702] 0
(match region
Yes Yes Yes Yes sequence_feature
refseq_gft YesUTl | (sa0a1) | 60516] | [413261] | (318259 | NO [0 | NOIOL MO0 | O it

rRiA transcript t(RMA miRMA)

34 Chapter 7. format_diagnosis.pl

	Installation
	Supported Input Formats
	About
	Filter flags
	Output flags
	FAQ
	format_diagnosis.pl

